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The present paper concerns the determination of the unloading wave in an elastic-plastic 

rod whose material has the following properties with respect to uniaxial strain. 
The loading branch of the compression stress-strain curve is subject to the conditions 

but is otherwise arbitrary : unloading occurs with constant density. We shall show that 

G 

m 

in this case the problem of determining the parameters of 

the unloading wave reduces to the integration of an ordinary 

first-order differential equation (*). This equation is inte- 
grable in quadratures and, in a particular case, in element- 
ary functions. Some examples will be considered. 

& 1. Let us consider a homogeneous semi-infinite straight 
rod of constant cross section made of an elastic-plastic 

Fig, 1 material. Limiting our attention to plane one-dimensional 
motions, we shall describe the properties of the material by 

means of a uniaxial compression stress-strain curve 

assuming that its loading portion is convex upward 
(Fig. 1). and that unloading occurs with constant 
density. The origin will be placed at the free end 
on the rod axis (X is the Lagrangian coordinate and 
t is time). A specified load p( t ) (p( 6) 2 0) 
acts at the end of the rod (X = 0) . 

Fig. 2 Let us assume that F (6) increases monotonously 
for 0 s i? 5 t, and decreases monotonously to zero 

for t > t,. In particular, let us consider the case where p(t) z 0 for 6 > ‘I> $, (I& 

and 7 are given constants). 
With the compression stress-strain diagram under consideration the perturbations pro- 

pagate in the form of continuous waves (there is no shock wave with the stress and 

‘) This equation was obtained by G. K. Iagund under the assumption of a piecewise- 
linear two-part compression stress-strain diagram (unpublished manuscript)* A similar 
problem is considered in [l]. although the investigation and conclusions of this paper are 
only partly duplicated here. 
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velocity discontinuity). The character of the external force is such that the perturbed 

region has two parts, i. e. loading region 1 and unloading region 2 (Fig. 2). The boundary 

between these regions is called the unloading wave (&?, Fig. 2). This boundary is a 

line in the X6 plane. Our problem consists in finding the unloading wave (which is not 

known in advance) and in determining the state parameters (stress and velocity) on this 

wave, Having done this, we can readily determine the state of the medium at any point 

of the XC plane, In the general case finding the unloading wave is no easy problem : 
this is typical of boundary value problems with an unknown boundary. We shall show, 

however, that under the above conditions the problem of determining the unloading wave 

reduces to the integration of an ordinary first-order differential equation . 

2. Let 0 (X, 6) be the normal stress on the transverse cross section, u (X. 8) the 

particle velocity, C (X, $) the longitudinal strain, and fl the density. The motion is 

described by the system of equations 

2+,,$ =o, g+;=o, 5 = 5 (e), (5 (0. r) = p (t) (2.1) 

It is assumed that the compressive stresses and compressive strain are positive, 

In region 1 (Fig, 2) the stresses are determined by the loading branch of the diagram. 

With the stipulated method of loading the motion in this region is described by simple 

(Reimann) waves. The straight lines 
1 (13 

r = n (6) (I - r,), 
(l” = r, t’s 

(2.2) 

are characteristics of positive direction : the condition U = const, 0 = const is fulfilled 

along each characteristic, The relation 

(11, = (pn (n))-’ do (2.3) 

is valid throughout region 1 (e. g. see [l] ) . 
In region 2 the strains are constant in each particle. IIence, from (2.1) we find that 

a& a/. 
x = 0, E = E(X), i‘ ~: 2’ (/), 5(x, I)-:-> ;iT R.-L P(t) (7.4) 

Provided the velocities and stresses on the unloading wave are continuous, ,&?Ul = 93, 

along AB (Fig. 2) . (The subscripts denote the limiting values at both sides of kB). 

So that 

Here X = rp ( t) is the equation of the unloading wave. 

Introducing the notation o* = o (cf (I), t). z.* = 1.r (w (1). t). , we have 

The continuity of the stresses on the unloading wave and (2.4) imply that 

xr cl? 
__- __ + tT* = p (t*) 
n (5*) t1t 

(2.5) 

where X, , 6, are the coordinates of the point c (Fig. 2). 

Equation (2.2) is the equation of the characteristic CD , so that 

X * = a (a*) (f* - 11 (o*)) (2.7) 

Eliminating x from the two latter relations and again replacing t, by t , we obtain 
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for 6 = p( t ) the differential equation 
d3* P(t)---* 
--s =t-t~(a’) for t,<t (3.8.f) 

with the initial condition 
u* (&) = P (tm) = om 

Having been found, the function G*( 6) together with Equation (2.7) determines the 

equation of the nnload~g wave. Equation (2.8.1) is integrable in quadratures. In fact, 

it can be rewritten in the form 

Integration over the 

At the same time. 

d (la*) = p (t) dt + t, (CT*) du* (2.8) 
limits & and 6 with allowance for the initial condition, yields 

f a’ 

t5* = t,G, + 5 P(T)dTI- 1 tlwd~ (2.9.1) 

3* &a *nt 

s 

tm 
fl(6) de = t1 (Q’) (I’ - tmCim - 

s 
PI(~) dt 

5 nl tICa*) 

where PI< $) is the given stress at the end of the rod during the loading phase. Thus, 

[‘--t~{a‘)]a*~ $ 
t 

PI it) dt + 
s P (1) dt (29.2) 

Let us denote 
f,(O’J %I 

tin I 

’ I fl) = 
\ ~~(tfdt-l- PWdt 

s 
it > tm1 

Then 
; %I 

fl?‘) 
It - tr (Q’)J Q’ = I (t) - 

s PI 0) dr (2.93) 

0 

Since 0 < t, (a*) < t,, 0 d p1 (t) Q urn and PI (t) increases monotonously, it fol- 

lows that %l 

s pr (z) dz > Itm - tr (Q’ )I e* 
&(a’) 

and from (2.9.2) and (2. 9.3) we have the estimates 
t 

(2.10) 

The first of these inequalities implies that t 

P(t)---* <p(t)-- & 
s 

m ‘rn 

P (T) dr 

Since P(t) decreases monotonously, then p( $) - 0, < 0 , and from (2.8; 1) we con- 
clude that a*( 6) decreases monotonously and tends to zero is I(W) c + a3. The asymp- 

totic behavior of a*( 8) as 6 +a follows from (2,9.3), 

Specifically, 

(2.11.1) 
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On the other hand, if the loading is instantaneous (6, 0). the exact equation 

o* (1) = t-1 I(1) (2.11.‘) 

is valid. From (2. 11, 2) we see that the maximum stress at the point under consideration 

is equal (regardless of the loading branch of the compression stress-strain diagram) to the 

average external stress over the time from the application of the load to the instant of 

arrival of the stress maximum at the observation point. The time required for the attain- 

ment of the stress maximum is usually easy to determine experimentally. Hence, the 

above fact can be used in treating experimental results. In the general case when 

t, > o , the stress 0 *( 6) on the unloading wave is equal to the average applied stress 

over the time interval ( $I( 0”) , t) (see (2.9.2) ) . It is important to note that the 

stress on the unloading wave considered as a function of time is independent of the com- 

pression stress-strain diagram, since the equation of the unloading wave depends on the 

latter. 

The above conclusions can be used to find the asymptote to the unloading wave and 

the tangent at its initial point. 

Let us suppose that the equation of the asymptote is of the form x= k( ti - 6, ) , where 

k and to are to be determined. From (2.7) we find that 

z - s = [a (o*) - A.1 t + kt” - n (o*) tr (a*) 
Using the expansion 

(1 (n*) = n (0) i_ n’ (0) o* + . . . 

and applying the usual rules, we find that 

x- = a (O), 1, = -+$+1(W) (2.12) 

The equation of the tangent to the unloading wave at the point (0, 6,) will be assumed 

to be of the form 
2 = 4 (t - tm) 

where & is to be determined. 

Let the expansions (2.13) 

p (t) = 0, - p1 (t - fm) + . . . . t, (a*)=& + q~(o*-u,) + . . . ,o* = urn-- Cl (t - t&-t. . 

be valid in the neighborhood of the point (0, 6,) . 
Herep , 41 are known and pl > 0, 41 > 0: cl is a coefficient to be determined. 

Substituting (2.13) into (2. 8) and taking the limit as ti -) &, we obtain 

Cl -pi 
- Cl = 

1 + QlCl 
(2.14) 

By the condition of the problem 6 = $l( 03 2 0 , so that 1 + 4 1Cl 2 0 . 

If we assume that Cl < 0 , Equation (2.14) is contradictory. Hence, Cl2 0 , and we 

obtain the value D, 

for this coefficient. 

On the basis of (2.7) we obtain the equation of the required tangent 

32 = a (4 VGTZ(t - M (2.15) 

Let us consider briefly the particular case where the applied stress increases linearly. 

For 0” we obtain 

CT’ (f) = 
21 (t) 

t+ -f/t”-2qZ(t)’ 
q-2 (2.16) 
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3, Let LIS consider an example which illustrates the effect of the compression stress- 

strain diagram on the decline of the maximum stress with distance. 
Let the compression stress-strain diagram be given by Equation 

E 1 6 -_ = -- 
e, 0 urn 

(3.1) 

for 0 and 8 lying in the ranges 

The corresponding curves are shown in Fig. 3. 
Now let us consider the case where the applied load is of the form 

p(t) = 
{ 

6,(1--t/t), O<l,<l 

0 t<o,t>z 

We then use (2.11.2) to obtain the following expression for the stress a*( $) on the 

unload.ing wave : 
(3.2) 

The equation of the unloading wave on the X6 plane is then 

x*=z ~~l/l+(ii-;;(b*,~~)” 4 
(3.3) 

Eliminating 6 from Equations (3.2) and (3.3), we obtain the relationship between 

o* (t) XL 
co= 6,’ 

xo = -- 
z f- 

-iz - 
677‘ 

Values of Do for several values of 6 , as well as values of X0 computed for the same 
values of t and various n (Fig. 4) are given below 

t~O.250 0.500 0.750 1.000 1.500 2.000 3.000 5.001, 
c?=O.875 0.750 0.625 0.500 0.333 0.250 0.167 0.100 
x0=0.250 0.500 0.750 1.000 1.530 2.000 3.000 5.000 (n = 1) 
x0=0.295 0.431 0.720 1.069 1.838 2.592 4.074 6.970 
x0=0.160 0.417 0.827 1.436 2.756 3.888 5.964 

(n = 3) 
9.990 (n =4) 

x0=0.149 0.523 1.351 2.534 4.222 5.654 8.484 14.140 (n=8) 
x0=0.209 1.486 3.300 4.471 6.708 8.944 13.416 22.360 (n =21,) 

The computed results show that changes in the 
compression stress-strain diagram (changes in the 

t I I 
a I.6 3.2 4.8 X0 

Fig. 3 Fig. 4 

parameter 72) have a weak effect on the law of decay of the maximum stress at small 

distances only; for X0 > f the effect of the diagram becomes noticeable and remains 
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evident all the way to the asymptotic form for large times and distances, for which we 
have c0 = 2 0 

The authors are grateful to A. M. Skobeev for his valuable comments. 
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A reciprocal principle for dynamic problems of the theory of elasticity is given in the 

papers [1 to 3). In this paper, a more general reciprocal principle is presented for the 

case in which displacement as well as traction boundary conditions are imposed on an 

elastic body. In contrast to the generally used method of derivation of the reciprocal 
theorem in dynamics, employing the Laplace transform and Betti’s law, the theorem of 
reciprocity is derived here from a variational principle. 

We note that in [4] the opposite route is used for static problems, i. e. the variational 
principles of the theory of elasticity are deduced from the reciprocal theorem. 

Let Uk , ukt nk be the components of the displacement, velocity, and generalized 
momentum vectors : C fk and 0” the components of the strain and stress tensors : E*lm 
the components of the tensor of elastic constants : xk and pk the components of the 
body force and external traction vectors ; Uk the components of the specified displace- 
merits; and p , I/ and s the density, volume and surface of the elastic body. 

The solution of a dynamic problem of the theory of elasticity reduces to the integra- 
tion of the equations of motion 

. an” 
V&r’h + XL = at (1) 

where 

d 
ik = E’kdE, 

auk 

31’ Itk = p”,,., ‘ih. = 5 (vi”k + vk”i)V vk = al (2) 


